precious space
Precious Space is a research group started up with the recognition that natural materials present in space, in particular water ice and organic matter, are precious from a scientific perspective as well as from an exploration point of view.
The goal of the team is to determine the preservation of these materials on planetary surfaces and sub-surfaces. The core competence is the understanding of the nature and evolution of regolith, i.e., the hosting layer of the materials, using remote sensing observations, numerical modelling and laboratory simulations.
The Precious Space team is supported since 2020 by the Sofja Kovalevskaja Award of the Alexander von Humboldt Foundation. The host institution is the Institut für Planetologie at the Universität Münster, Germany. Highlights of our research are presented at the Precious Space page.
PErsonal research
Scientific research is carried out in the field of planetary science, with particular interest in the nature and evolution of the solid surfaces of Solar System objects. The investigations use remote sensing observations by spacecraft. Most of my research work is and has been based on the following space missions and scientific payload:
Mars Express / OMEGA and the investigations of chlorides and phyllosilicates
Dawn / FC and VIR at asteroid Vesta and the investigations of olivine-rich geologic materials
Dawn / FC and VIR at dwarf planet Ceres and the investigations of cryovolcanism
ExoMars / CLUPI for future microscale observations of the martian surface
research TECHNIQUES
Planetary geology
This field exploits primarily optical imagery and 3-D topographic models. Geomorphology, morphometry and stratigraphic relationship are used to produce geologic maps and inform on the type of processes that affected the surface, like volcanism, tectonism, or fluvial. Timing of the events can be determined with impact crater size-frequency distribution measurements or with rocks size-frequency distribution measurements coupled to the flux of meteoroid bombardment.
Near-Infrared mapping spectroscopy of planetary surfaces
This method enables us to characterize the mineralogy of planetary surfaces by analyzing reflected light. Absorption bands of rock-forming minerals, like pyroxene, olivine, phyllosilicates and carbonates can be detected, quantified and mapped across a planetary object. This tell us about how rocks formed, for example by magmatic processes, volcanism or aqueous alteration.
Laboratory near-infrared spectroscopy of analogues material
Near-Infrared measurements of analogue materials, such as meteorites, are performed in the laboratory under controlled conditions to provide a ground truth for measurements in space. A variety of aspects affecting the near-infrared properties of a material can be investigated. I have been studying the effects of observation geometry, grain size and mineralogy.
RECENT peer-reviewed publications
2024
Rüsch, O., Hess, M., Wöhler, C., Bickel, V. T., Marshal, R. M., Patzek, M., Huybrighs, H. L. F., (2024), Discovery of a dust sorting process on boulders near the Reiner Gamma swirl on the Moon. Journal of Geophysical Research: Planets, 129, e2023JE007910. https://doi.org/10.1029/2023JE0079102023
Patzek, M., Rüsch, O., & Molaro, J. L. (2024). On the response of chondrites to diurnal temperature change—Experimental simulation of asteroidal surface conditions. Journal of Geophysical Research: Planets, 129, e2023JE007944.2022, https://doi.org/10.1029/2023JE007944
other publications
Mars Profound: A short proposal in response of an ESA call for ideas (2020).
A short, co-authored article on the role of New Space companies for future planetary research (2020).
Evolution of lunar boulders, published at the Planetary Geomorphology Image of the Month blog (2019).
POSITIONS
since 2019: Head of junior research group at the
Institut für Planetologie, Universität Münster, Münster, Germany.
2017 – 2019 : ESA Research Fellow at the
ESA European Space Research and Technology Center, Noordwijk, the Netherlands.
2015 – 2017: NASA Postdoctoral Fellow at the
NASA Goddard Space Flight Center, Greenbelt, MD, USA.
Education
Institut für Planetologie, Westfälische Wilhelms-Universität Münster, Münster, Germany.
2011 – 2014: PhD (PhD Thesis available here)